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Abstract Recent work suggests that Anderson acceleration can be used as an accel-
erator to the fixed-point iterative method. To improve the viability of the algorithm,
we seek to improve its computational efficiency on parallel machines. The primary
kernel of the method is a least-squares minimization within the main loop. We con-
sider two approaches to reducing its cost. The first is to use a communication-
avoiding QR factorization, and the second is to employ a GMRES-like restarting
procedure. On problems using 1,000 processors or less, we find the amount of com-
munication too low to justify communication avoidance. The restarting procedure
also proves not to be better than current approaches unless the cost of the function
evaluation is very small. In order to begin taking advantage of current trends in ma-
chine architecture, we also studied a first-attempt single-node GPU implementation
of Anderson acceleration. Performance results show that for sufficiently large prob-
lems a GPU implementation can provide a significant performance increase over
CPU versions due to the GPU’s higher memory bandwidth.

Keywords: Anderson acceleration, nonlinear solvers, fixed-point iteration, TSQR
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1 Introduction

Nonlinear root finding problems of the form f (u) = 0 are common in computational
science problems and especially when computing the solution of discretized PDEs.
For large-scale systems, the Newton-Krylov method is commonly used due to the
fast, often quadratic, convergence of the Newton iteration [4, 12] and the scalability
of linear Krylov methods. However, the need to solve a large linear system each
iteration involving the Jacobian of f results in high computational cost per step.
Furthermore, for complex problems, finding an analytical expression for the Jaco-
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bian can be non-trivial or evaluation of the Jacobian may be expensive (see e.g.,
[10]). Numerical approximations of the action of the Jacobian times a vector can be
used instead, but doing so can compromise the rate of convergence of the Krylov
iteration. In either case, a scalable preconditioner is often required for good perfor-
mance when solving the linear systems, and the preconditioner adds considerable
complexity to the solution process.

The nonlinear problem can be posed as a stationary problem u= g(u) through the
relation f (u)= u−g(u)= 0. Fixed-point iteration can then be applied to this system.
Compared to methods based on the Newton iteration, the fixed-point method is sim-
ple to implement and has a lower computational cost per step, as it does not require
use of the derivative. Unfortunately, the iteration does not always converge since the
function, g(u), must be a contraction map [11]. When the iteration does converge,
the rate of convergence is often slow, typically only linear. However, recent work
has shown that the rate of convergence of fixed-point iteration can be improved
through Anderson acceleration (AA) [16, 2]. This work raises the possibility of us-
ing Anderson-accelerated fixed-point iteration as an alternative to Newton-Krylov
in cases where determining the Jacobian is difficult, evaluating the Jacobian is ex-
pensive, or the rate of convergence of the Krylov iteration is slow due to a lack of a
good preconditioner.

AA improves the rate of convergence of the fixed-point iteration by utilizing in-
formation from more than just the most previous iterate. For each iterate, it chooses
a linear combination over m prior iterates that minimizes the fixed-point residual in
the least-squares sense. This approach of maximizing rate of convergence through
a residual minimizing choice of next iterate is similar to the idea behind the gener-
alized minimum residual method (GMRES) iterative linear solver. Indeed, on linear
problems, a mathematical equivalence in the rate of convergence between AA and
GMRES has been shown in [16]. The size of the least-squares problem that must be
solved each AA iteration is n×m, where n is the number of unknowns in the prob-
lem. Solving a large least-squares problem each iteration makes AA more expensive
per step than basic fixed-point iteration. If g(u) is not a dominant cost, minimizing
the cost of the least-squares problem is the key to making the method efficient. In
this paper, we consider two approaches to implementing AA that are aimed at low-
ering the cost of solving the least squares problem. Both cases compromise the rate
of convergence of the iteration, so any net benefit from either approach is a matter
of balancing cost per iteration and the number of iterations that must be computed.
We found the trade-off in one case not to be favorable for the sizes of problems we
tested, but the other approach to be modestly favorable in some instances.

The first approach is aimed at large-scale problems implemented on distributed-
memory machines with at least thousands of processors and problem sizes with tens
of thousands or more unknowns per processor. We consider whether it is possible, or
even necessary, to lower the MPI communication cost of the least squares problem.
In Anderson acceleration, the least-squares problem can be solved in a variety of
ways. QR factorization is a good choice due to a balance between efficiency and ac-
curacy [16, 7]. With some approaches for the QR problem, the factorization can be
incrementally updated each iteration without requiring a full factorization [8, 15].
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When computing the QR decomposition on distributed-memory machines, use of
panel factorization, blocking and tiling optimizations, such as those employed in the
ScaLAPACK library [3, 5], can give a significant performance benefit over unopti-
mized algorithms. Recent communication-avoiding QR algorithms use such tech-
niques to minimize interprocessor communication cost, which may be of particular
benefit on large-scale machines [6]. Such algorithms minimize communication of
the same matrix elements by performing operations on sub-matrices of size greater
than rank one. Such techniques are generally unsuitable for per-iteration update of
the factorization. Employing those algorithms in the context of AA would require
updating the QR factorization only every k vectors, limiting the degree of accel-
eration in the fixed-point iteration. Nevertheless, use of such algorithms might be
beneficial if the computational savings outweigh the cost of computing additional
iterations.

The second approach, restarting, is applicable to all sizes of problems, as well as
both serial and parallel implementations. In this paper, we tested it on small-scale
parallel problems. Restarting is a commonly used technique for reducing cost in
GMRES [13]. For linear problems, a mathematical equivalence in the rate of con-
vergence between a truncated-and-restarted AA and a restarted GMRES has been
shown [16]. Despite the equivalence, the underlying operations computed by each
method are different, i.e. they have a different computational cost structure. How-
ever, costs are comparable enough between them that one would expect the trade-
off between rate of convergence and computational savings to balance similarly
between the two methods on linear problems. However, in AA, rather than periodi-
cally truncating the iteration and restarting with the last iterate, a factorization over
a sliding window of k previous iterates can be maintained [16]. Thus, rather than pe-
riodically fully discarding all previous iterates and starting over with a single vector,
only the most stale iterate is deleted each iteration. This contrasting approach, which
we refer to as “sliding”, allows a less severe reduction in the rate of convergence, at
the cost of applying the delete procedure each iteration. We tested the overhead to
determine whether its additional cost was worth the better acceleration. We found
that avoiding the computational cost of the delete operation through restarting is
modestly beneficial in some cases but not all.

Finally, we tested the performance of a GPU implementation of Anderson accel-
eration as a whole. High Performance Computing machines increasingly employ ac-
celerators such as GPUs, due to their high concurrency. For an algorithm to be well-
suited for current and future machines, a significant amount of its parallelism must
be captured within each node through the accelerator. Parallelism through MPI alone
is no longer sufficient. As a step towards an implementation of Anderson acceler-
ation suitable for current and future supercomputers, we developed a single-node
GPU implementation of Anderson acceleration that is based on the GPU-optimized
BLAS library, CuBLAS. GPUs are balanced differently than CPUs and require a
higher degree of concurrency to operate efficiently. On the machines we tested, we
found that the GPU version was quite inferior to the CPU version when the number
of unknowns in a problem was about 10,000 or less. When the number was greater,
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the GPU version was able to greatly outperform the CPU version due to the higher
memory bandwidth on the device.

This paper is organized as follows. Section 2 describes the MPI-based imple-
mentation of AA used for the experiments. Section 3 describes some performance
measurements of the implementation to determine the balance of local computa-
tion and interprocessor communication. Section 4 details performance comparisons
between a communication avoiding implementation of AA versus the base imple-
mentation. In Section 5 we give a performance comparison of a restarted version of
AA versus the base implementation, which uses a sliding window of past iterates.
We describe and give performance results for the GPU implementation in Section
6. Lastly, in Section 7, we make some final conclusions and describe some possible
future work.

2 Anderson Acceleration

In this section we describe the baseline implementation of AA used in our numer-
ical experiments. The implementation is part of the C language KINSOL package
of solvers for nonlinear algebraic equations from the SUNDIALS suite of codes
[9, 1]. Methods in SUNDIALS are written on top of an abstracted vector API so
that they are independent of whether and how parallelism is used. The SUNDIALS
distribution is equipped with a number of packages that include implementations of
the vector kernels for serial, thread-parallel, and distributed memory parallel (with
MPI) vectors, although users can supply their own. The library abstracts away de-
tails about how the data is mapped on to processors and how communication is
handled between processors when computing operations on the vectors. As such,
we specify the implementation of AA below in a “Matlab-like” manner, only speci-
fying details about parallelization when needed.

Our goal is to solve fixed-point problems of the form: Given g : Rn→ Rn, find u
such that u = g(u). The Anderson accelerated fixed-point method is given in Algo-
rithm 1.

Algorithm 1: Anderson acceleration
Input: u0, m≥ 1, and ε

u1← g(u0)
for i = 1, 2, . . ., until ‖ui+1−ui‖< ε do

mi←min{m, i}
Hi← [ fi−mi , . . . , fi], where f j = g(u j)−u j

Solve the constrained least-squares problem for α(i) = (α
(i)
0 , . . . ,α

(i)
mi )

T s.t.
minα ‖Hiα‖2 s.t. ∑

mi
j=0 α j = 1

ui+1← ∑
mi
j=0 α

(i)
j g(ui−mi+ j)

end
Output ui
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In practical implementation, the constrained least-squares problem is often for-
mulated as the following equivalent unconstrained least-squares problem [7, 16]:
find γ(i)=(γ

(i)
0 , . . . ,γ

(i)
mi−1)

T such that minγ ‖ fi−Fiγ‖2, where Fi≡ [∆ fi−mi , . . . ,∆ fi−1]
and ∆ f j = f j+1− f j. The least-squares coefficient vectors α and γ are related by
α0 = γ0, α j = γ j− γ j−1 for 1 ≤ j ≤ mi− 1, and αm1 = 1− γmi−1. The next iterate
then becomes ui+1 = g(ui)−∑

mi−1
j=0 γ

(i)
j

[
g(ui−mi+ j+1−g(ui−mi+ j)

]
.

The KINSOL implementation of AA follows the approach described by Walker
in [15]. The least-squares problem is solved by performing the QR factorization of
Fi and using backward substitution to solve the upper triangular system Riγ = QT

i fi.
Note that when i < m, the size of F is n× i, and a new vector is added to the right
of Fi in each iteration. After the m-th iteration, Fi remains of fixed size, n×m, but
in each iteration a column vector is removed from the left of Fi while a new vector
is added to the right. It is inefficient to re-factorize Fi anew each step, so two helper
procedures are used to in-place update Qi and Ri based on the previous factorization.
QRAdd updates the factorization to account for the addition of a vector to the right
of Fi, while QRDelete updates for the removal of a vector from the left.

QRAdd uses modified Gram-Schmidt to orthonormalize each new ∆ fi−1 against
the previous columns of Qi−1. The resulting vector becomes the new rightmost col-
umn of Qi. Algorithm 2 gives pseudo-code for the procedure using Matlab notation.

Algorithm 2: QRAdd
Input : Q ∈ Rn×mi , R ∈ Rmi×mi , and ∆ fi−1
Output: Q ∈ Rn×mi+1 and R ∈ Rmi+1×mi+1

for j = 1 to mi−1 do
R( j,m)← Q(:, j)T ∗∆ fm−1
∆ fi−1← ∆ fi−1−R( j,m)∗Q(:, j)

end
Q(:,m)← ∆ fi−1/‖∆ fi−1‖2 and R(m,m)←‖∆ fi−1‖2.

On a distributed-memory machine with p processors, Qi is represented as a set
of column vectors, with each processor receiving n/p rows of each vector. Commu-
nication between processors is incurred by the dot products Q(:, j)T ∗∆ fm−1 and
when computing the norm ‖∆ fi−1‖2 (implemented with a dot product). The results
of the dot products are broadcast to all processors, resulting in a copy of Ri on each
processor.

QRDelete uses Givens rotations to update the factorization when a vector is re-
moved from F . The procedure is based on the observation that if Fk−1 = Q∗R then
Fk−1(:,2 : m) = Q ∗R(:,2 : m), where R(:,2 : m) is upper Hessenberg. Note that Q
and R(:,2 : m) do not constitute a QR factorization of Fk−1(:,2 : m). They can be
updated to be one by using Givens rotations to return R(:,2 : m) to upper triangular
form and then applying the inverse of those rotations to Q. Specifically, if we de-
termine Givens rotations J1, · · · ,Jm−1 such that Jm−1 ∗ · · · ∗ J1 ∗R(:,2 : m) is upper
triangular, then
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Fk−1(:,2 : m) = Q∗R(:,2 : m) = Q∗ J1′ ∗ · · · ∗ J′m−1 ∗ Jm−1 ∗ ...∗ J1∗R(:,2 : m),

and setting Q = Q ∗ J′1 ∗ · · · ∗ J′m−1 and R = Jm−1 ∗ ... ∗ J1 ∗R(:,2 : m) gives a QR
factorization for Fk−1. The pseudo-code for QRDelete is shown in Algorithm 3.

Algorithm 3: QRDelete
Input : Q ∈ Rn×m and R ∈ Rm×m

Output: Q ∈ Rn×m−1 and R ∈ Rm−1×m−1

for i = 1 to m−1 do
b←

√
R(i, i+1)2 +R(i+1, i+1)2

c← R(i, i+1)/b and s← R(i+1, i+1)/b
R(i, i+1)← d and R(i+1, i+1)← 0
if i < m−1 then

for j = i+2 to m do
d← c∗R(i, j)+ s∗R(i+1, j)
R(i+1, j)←−s∗R(i, j)+ c∗R(i+1, j) and R(i, j)← d

end
end
V ← c∗Q(:, i)+ s∗Q(:, i+1)
Q(:, i+1)←−s∗Q(:, i)+ c∗Q(:, i+1) and Q(:, i)←V

end
Q← Q(:,1 : m−1) and R← R(1 : m−1,2 : m)

We are interested in the balance between MPI communication and local on-node
cost. The former can be broken down into a bandwidth and latency cost. The latter
can be further broken down into the cost of floating-point operations and the cost of
data transfers between the processor and memory.

In the case of the SUNDIALS implementation, all MPI communication comes
from the dot products found in QRAdd and backwards substitution. On each proces-
sor, the dot product kernel sums over the local portion of the vectors itself and only
calls MPI’s Allreduce routine for the summed value. As a result, the reduction is
done only over a single number, and the time spent within MPI is nearly completely
a latency cost, with very little bandwidth cost. Only synchronous communication is
used, so the processor remains idle during the reduction.

The three main kernels in AA, QRAdd, QRDelete, and backwards substitution,
are all comprised solely of vector-vector operations. As such, the ratio of floating-
point cost to data transfer cost within the kernels (the arithmetic intensity) is very
low, well less than one flop per byte. As a result the on-node cost is dominated by
the time spent in streaming data between memory and the processor.

Therefore, in AA, the comparison between local-node cost and MPI communi-
cation essentially reduces to a balance between local memory transfer cost and the
latency costs for the reductions. The TSQR algorithm reduces communication cost
by reducing latency on distributed memory machines, so it targets the main form of
communication cost found in AA.
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Both the on-node and MPI costs of QRAdd and backwards substitution are very
similar. Within each AA iteration, QRAdd performs mi− 1 dot products, performs
mi−1 linear sums, and incurs the data transfer costs of streaming over the involved
mi vectors. Backwards substitution must perform mi dot products to determine γ(i)

and then perform mi linear sums to produce the next iterate vector. It also incurs the
data transfer costs of operating on those mi +1 vectors.

QRDelete is not invoked unless i > m, in which case mi = m and the sizes
of the matrices remain fixed at Q ∈ Rn×m and R ∈ Rm×m. In that case, the local
cost of QRDelete is on par with the other two kernels in that it applies Givens
rotations, implemented as a pair of linear sums, to m vectors (as well as to the
very small matrix R). No MPI communication is required. If the number of to-
tal iterations is considerably greater than m, the local cost of QRDelete is a sub-
stantial portion of the overall on-node cost of the whole method. If the history
of iterates is flushed every m iterations and the Anderson iteration restarted with
ui+1 = g(ui)−∑

mi−1
j=0 γ

(i)
j (g(ui−mi+ j+1 − g(ui−mi+ j) then QRDelete is not needed

and the cost per step would be reduced. However, the rate of convergence of the it-
eration would also be hindered. We test whether it is favorable to make this trade-off
in Section 5.

3 Balance of communication versus computation

In this section we discuss some performance measurements of the ratio of inter-
processor communication versus local-node computation for KINSOL’s AA imple-
mentation. The tests were conducted on two machines: The Blue Gene Q system
“Vulcan”, and the Intel Xeon-based system “Cab”. Vulcan is composed of 24,576
16-core PowerPC A2 processors running at 1.6GHz. The processors are connected
by a high-speed, low-latency network configured as a 5D torus. IBM’s BG/Q MPI
library, based on MPICH2 1.4, was used as the MPI library for the tests on Vulcan.
Cab is a cluster of Intel Xeon E5-2670 processors, with two 8-core CPUs on each
node in a shared-memory configuration, and a total of 1,296 nodes. The nodes are
connected via an InfiniBand QDR network in a two-stage federated fat-tree.

On both Vulcan and Cab, the implementation was instrumented with MPI’s
Wtime function. On Vulcan, the timer has sub-nanosecond resolution, whereas on
Cab the timer has microsecond resolution. In both cases, timer accuracy was not
a limitation. SUNDIALS only uses blocking communication, so the time spent on
communication and computation could be measured independently.

On Vulcan, KINSOL was configured to compute a fixed-point problem using AA
for 4 iterations, with a window size of m = 4, and for 16 iterations with a window
size of m = 16 on a problem with 1, 10, 100, 1,000, 10,000, and 100,000 unknowns
per processor. The problem was run on 100 processors and 1,000 processors, using
only a single core per processor to ensure that all MPI communication was done
over the network and not through shared memory. The g(u) problem was a dummy
function that returned random values for the vector elements. Note that the cost of
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AA depends only on the number of iterations computed, the value for m, the number
of elements in a vector per processor, and the number of processors, but does not
depend on the contents of the solution vector. The choice of g(u) is irrelevant for cost
measurement as long as the number of iterations does not change. In our timings,
we ignored the cost of computing g(u); the cost measured is for just the Anderson
algorithm itself.

The outcome on Vulcan was very similar in all cases so we only show the largest
problem with 1,000 processors and with 16 iterations. The results are shown in Table
1a. The rightmost column gives the percentage of overall cost that was spent on MPI
communication. While communication dominates when the number of unknowns
per processor is small, it becomes negligible for 10,000 unknowns per processor
or greater. For most large-scale problems, 10,000 unknowns per processor is quite
lean, so the cases of 10,000 unknowns or greater are the most relevant. For problems
where the number of processors is 1,000 or less, communication is not a major cost
for AA on Vulcan.

On Cab, the problem setup was the same except for two differences. The problem
was run on 100 processors and 256 processors, as 256 was the limit of our access.
Furthermore, the problem was additionally run with 1,000,000 unknowns to better
show how communication falls off in importance relative to computation. As on
Vulcan, the outcomes were quite similar regardless of the number of processors or
iterations, so we display only the 16 iteration case with 256 processors in Table 1b.
We see that communication on Cab is a greater proportion of overall cost compared
to Vulcan, which is not surprising considering the less capable network on Cab.
However, the communication cost is still overtaken by the cost of local computation
as the number of unknowns increases, and the cost becomes minor even for lean
problems.

Overall, we conclude that communication is not a major cost in AA for the scale
of problems we have considered. It may be of greater importance when using a
larger number of processors.

4 TSQR versus modified Gram-Schmidt

In this section we consider whether the communication-avoiding Tall Skinny QR
(TSQR) algorithm might give better performance due to reduced MPI latency com-
pared to the modified Gram-Schmidt implementation in KINSOL (QRAdd). We
tested with the distributed-memory TSQR implementation from NuLAB [14]. The
details of the algorithm can be found in [6]. We employed the variant where com-
munication is done using a binary reduction tree. The local QR solves on sub-blocks
were computed using a LAPACK library optimized for the respective machine,
which in the case of Vulcan was IBM’s ESSL library and on Cab was Intel’s Math
Kernel Library (MKL).

The matrices were the same size and used the same partitioning over processors
as those in Section 3, allowing us to directly compare the performance of TSQR
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Unknowns
per processor Total Local MPI % MPI

1 4.8E-03 4.0E-04 4.4E-03 91.7%
10 4.8E-03 4.6E-04 4.3E-03 90.4%
100 5.7E-03 1.2E-03 4.5E-03 79.0%
1,000 1.4E-02 9.3E-03 5.0E-03 34.9%
10,000 9.3E-02 8.8E-02 5.0E-03 5.4%
100,000 8.8E-01 8.8E-01 5.0E-03 0.6%

(a) Run times on Vulcan

Unknowns
per processor Total Local MPI % MPI

1 6.2E-03 3.4E-05 6.1E-03 99.55%
10 6.1E-03 5.9E-05 6.1E-03 99.0%
100 9.8E-03 6.6E-05 9.7E-03 99.3%
1,000 8.5E-03 3.3E-04 8.1E-03 96.1%
10,000 1.6E-02 3.5E-03 1.3E-02 78.5%
100,000 6.2E-02 4.3E-02 1.9E-02 30.8%
1,000,000 5.6E-01 5.1E-01 4.6E-02 8.2%

(b) Run times on Cab

Table 1 Local node and MPI time costs in seconds for AA in KINSOL when computing for 16
iterations with m = 16. On both machines, the MPI cost becomes minor when the number of
unknowns per processor is modest or larger.

versus modified Gram-Schmidt. The matrices were filled with random data. Note
that the amount of computation and communication does not depend on the content
of the matrices, only their dimensions.

The relative performance of TSQR compared to a non-communication-avoiding
algorithm improves with the width of the matrix. In particular, TSQR performs bet-
ter relative to KINSOL for the case when the matrix is 16 columns wide instead of
4 so we only display that case in Table 2. The Vulcan measurements were done on
1,000 processors and the ones on Cab were done using 256 processors.

The far right column of the table shows the overall performance of TSQR relative
to modified Gram-Schmidt. We see that on Vulcan the overall cost is significantly
reduced. However, the percentage of overall cost that is communication is trivial
on Vulcan for problems with even a modest number of unknowns per processor.
The cost reduction is from savings in computation not MPI communication. The
lower computational cost of TSQR is in part because it uses a tuned library, ESSL,
while KINSOL is untuned. For QR factorization, the performance gain of tuned
libraries comes primarily through panelization and tiling, which requires operations
be performed on sub-matrices wider than a single column. This requirement is at
odds with in-place updating the QR factorization one column at a time, as is done in
KINSOL and required by the algorithm as written above. To exploit tuned libraries
fully, AA would need to perform the QR factorization over k vectors at a time,
where the performance gain would increase with k up to some saturation point. That
would mean acceleration could be applied only every k-th iteration, and ordinary
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fixed-point would need to be used for the iterations in between. To prevent the rate of
convergence from being disastrously reduced, k would need to remain small, putting
the needs of convergence at odds with the needs of QR algorithm optimizations. It
is possible that for some problems there is a balance that results in a net reduction
in overall cost, but we have not yet found such a case on Vulcan.

On Cab, the performance of TSQR is unexpectedly poor. As seen in Table 2b,
both the communication and computational cost are increased in TSQR over KIN-
SOL by orders of magnitude. We initially believed this was a mistake in our problem
setup, but after much investigation we have not found anything particular. The ap-
proach taken by TSQR to solving the QR problem is quite different from that of
KINSOL, and it appears to balance unfavorably on Cab’s architecture. We will con-
tinue to investigate the underlying cause of this. In any case, in light of the results
of Section 3, communication avoidance is not expected to be helpful on the scale of
problems we have tested.

In conjunction with the tests in Section 3, we conclude that communication
avoidance is not generally helpful for problems computed on 1,000 processors or
less. For larger scale problems, communication cost may increase relative to com-
putation to the point where avoiding communication becomes important, but that
possibility is not tested by our measurements. However, current trends in supercom-
puter architecture are moving away from large node counts and moving more par-
allelism to within each node. Current supercomputers such as Sequoia at Lawrence
Livermore National Laboratory and Titan at Oak Ridge National Laboratory have
large node counts of about 100,000 and 20,000 respectively. The replacement ma-
chines are planned to only have several thousand nodes in each case, with most of
the parallelism coming from GPUs. This makes the case for use of communication
avoidance in Anderson acceleration at the MPI level uncompelling.

5 Restarting

Since communication is not an important cost for the cases we tested, we consider
a possible approach for reducing computational cost. As discussed in Section 2, we
can restart the iteration every m iterations using only the most recent iterate. As with
restarting in GMRES, doing so mitigates the quadratic increase in cost per iteration,
but may also reduce the rate of convergence. However, unlike GMRES, AA can
also control quadratic growth in cost by limiting the number of past iterates, m, and
updating the QR factorization in-place, as discussed in Section 2. This practice is
used in the current KINSOL implementation. For easy comparison with “restarting”,
we will label this case as “sliding”, since the window of past iterates slides forward
each iteration. By limiting m through sliding, the rate of convergence is also reduced,
but not as severely as by restarting. The trade-off is that QRDelete must be called
each iteration past the m-th one, which increases the cost per iteration.

We tested on Vulcan and Cab whether restarting gives better performance than
sliding on a restricted-additive-Schwarz (RAS) iteration applied to the 2D Poisson
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Unknowns
per processor Total Local MPI % MPI

Overall
% GS

1 2.6E-05 2.2E-05 4.0E-06 15.4% 21.3%
10 3.2E-04 3.2E-04 3.0E-06 0.93% 39.3%
100 1.0E-03 7.1E-04 3.2E-04 31.1% 44.2%
1,000 1.8E-03 1.5E-03 3.2E-04 17.6% 23.0%
10,000 2.8E-02 2.7E-02 3.3E-04 1.2% 32.5%
100,000 6.9E-02 6.8E-02 8.9E-04 1.3% 8.5%

(a) Run times on Vulcan

Unknowns
per processor Total Local MPI % MPI

Overall
times GS

1 1.3E-00 6.4E-01 6.6E-01 50.7% 437x
10 2.8E-00 3.9E-01 2.4E-00 85.8% 1045x
100 3.2E-00 3.8E-01 2.8E-00 88.0% 593x
1,000 3.7E-00 8.2E-01 2.9E-00 77.8% 793x
10,000 4.0E-00 8.4E-01 3.2E-00 79.1% 450x
100,000 3.6E-00 1.1E-00 2.5E-00 69.0% 100x

(b) Run times on Cab

Table 2 Local node and MPI time costs (in seconds) for the QR factorization kernel in AA when
computed using TSQR, for 16 iterations with a window size of 16. On Vulcan, the communication
cost is non-trivially reduced compared with the KINSOL case, but communication is too small a
percentage of the overall cost for this to matter. In Cab, the communication cost is actually greatly
increased.

problem. Details about the RAS problem can be found in [16], where tests of An-
derson acceleration compared to fixed-point iteration.

∆u+20u+20ux +20uy = f in D = [0,1]× [0,1], where u = 0 on δD.

The problem was discretized using centered differences discretization on a 1282

node grid, with f =−10. The domain was divided into 4 sub-domains per direction,
for a total of 16 sub-domains, with 3 grid lines of overlap between neighbors.

The linear sub-domain problems were solved with a direct solver, but the com-
putational cost of g(u) was ignored. Only the cost of the operations in AA itself
were measured. Of course in practice the cost of g(u) may matter greatly, but the
complexity varies widely between problems. The measurements are therefore an
optimistic bound. Compared to the normal implementation, restarting increases the
number of iterations that must be computed, so if the trade-off is not worthwhile
when g(u) has zero cost, it will not be worthwhile when the cost of g(u) is included.

Before considering computational efficiency, we first look at how restarting af-
fects convergence compared to sliding. Restarting was compared with sliding on the
RAS problem with the following parameters. The problem was run when restart-
ing every 5, 10, and 15 iterations, when sliding with m limited to 5, 10, and 15,
and without restriction on m. In what follows, we label that last case the baseline
case. For comparison, the problem was also computed using fixed-point iteration
with no acceleration. The convergence plots are shown in Figure 1. We see that AA
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(c) m = 15

Fig. 1 Comparison of the rate of convergence of restarted Anderson acceleration versus full An-
derson acceleration on a 2D Poisson problem. The running times are listed in Table 3.

generally converges much more quickly than the fixed-point iteration. The rate of
convergence is reduced for both restarting and sliding, although less so for sliding.
As m increases, the rates of convergence improve for both sliding and restarting.
When m = 10, the rate of convergence for sliding is almost the same as for the base-
line case. However, even when m = 15, the rate of convergence for restarting is still
significantly reduced compared to the baseline case.

We now turn to computational efficiency. On both Vulcan and Cab, restarting was
tested using 16 processors using the same parameters as the previous paragraph. The
costs, not including that of evaluating g(u), are shown in Tables 3a and 3b for the
sizes of m and number of iterations that corresponds to how long it takes to reach
a tolerance of 10−14. For example, as can be seen in the figures, it takes about 30
iterations for the baseline iteration to reach the limit of precision. Table 3 shows
that it takes 0.072 seconds on Vulcan to compute those 30 iterations. Any case on
that machine with lower times to reach machine precision is an improvement on the
baseline case.
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On Vulcan, we see that sliding and restarting with m = 5 give an improvement
over the baseline case, and sliding with m = 10 gives a negligible improvement. For
sliding, even though the cost of QRAdd is reduced due to the smaller window size,
QRDelete is also called. We can see this call adds significant overhead. For example,
when m= 15, sliding needs about the same number of iterations as the baseline case,
but the cost of QRAdd is smaller due to the restricted size of m. However, the overall
cost is still higher due to the overhead of QRDelete. In contrast, restarting avoids
the overhead of QRDelete, but it must compute a larger number of iterations than
sliding. The balance results in a cost on Vulcan that is similar between restarting
and sliding. When m = 10, restarting requires slightly more time than sliding, while
when m = 15, restarting takes slightly less time.

Restarting is more favorable on Cab, with the most time-consuming case of
restarting using less time than the least expensive case of sliding. A window size
of m = 5 gives the best improvement over the baseline case for both sliding and
restarting. In that case, sliding costs about 82% of the baseline case while restarting
incurs 62% of the time, which makes restarting 75% of the cost of sliding. The most
expensive case for restarting was with m = 15, where it incurred 74% of the cost of
the baseline case while sliding was 109%.

Type m Iters Time (s) Type m Iters Time (s)
Sliding 5 47 0.058 Restarted 5 71 0.058
Sliding 10 33 0.071 Restarted 10 49 0.073
Sliding 15 32 0.089 Restarted 15 42 0.085
Baseline 30 30 0.072

(a) Vulcan

Type m Iters Time (s) Type m Iters Time (s)
Sliding 5 47 0.028 Restarted 5 71 0.021
Sliding 10 33 0.031 Restarted 10 49 0.022
Sliding 15 32 0.037 Restarted 15 42 0.025
Baseline 30 30 0.034

(b) Cab

Table 3 Cost of Anderson acceleration when using restarting versus sliding the QR factorization
using QRDelete. The number of iterations corresponds to those needed by each iteration in Figure
1. Restarting is less efficient on Vulcan but more efficient on Cab.

We see that the cost of QRDelete is modest to the point that restarting gives
no benefit over sliding on Vulcan, even when g(u) has no cost, but still expensive
enough that avoiding it gives an improvement on a different machine architecture.
This test is only for one problem, and the effect on the rate of convergence of slid-
ing and restarting varies from problem to problem. It can be expected, though, that
restarting will require a significantly higher number of iterations over sliding in
general. Even on a machine like Cab, the increased number of iterations could be
harmful if the cost of g(u) were non-trivial. However, restarting requires almost no
additional complexity in the implementation on top of sliding and co-exists with it
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easily. Like with most implementations of GMRES, the option can be left to the user
and might be valuable on some problems.

6 GPU implementation

On current high performance computing machines, the majority of the compute ca-
pacity on each node now comes from accelerators such as GPUs and the Intel Phi
line of processors. A well-balanced algorithm for modern supercomputers not only
has to be efficient at MPI communication between nodes, but also must make good
use of the local accelerators. The architectures of such systems are balanced dif-
ferently than pure CPU ones, so algorithms must be adapted to take full advantage
of them. Along the path for developing an implementation of Anderson acceler-
ation well-suited for modern machines, we have begun work on implementations
that make use of accelerators. In this section we describe a first step effort to imple-
ment Anderson acceleration on GPUs. The implementation is currently only for a
single node and is not yet fully optimized for the GPU architecture, but still shows
a considerable performance increase over a CPU implementation. Based on lessons
learned from this initial effort, a better optimized and MPI-capable implementation
will be developed in future work.

Compared to traditional CPUs, GPUs are characterized by a much higher level of
single instruction multiple thread (SIMT) parallelism. For the purposes of this paper,
they can be thought of as vector processors, where thousands of vector or matrix
elements can be processed in parallel simultaneously using the same instructions.
The high SIMT concurrency gives such processors up to an order of magnitude
higher peak flops rate than CPUs. GPUs on HPC class machines also have their own
RAM, which generally has five to ten times higher bandwidth than the main memory
of CPUs. As a trade-off, their caching systems are comparatively limited, and the
latency to RAM is also many times higher. Instead of using large low-latency caches
to minimize the performance penalty of accessing RAM, as done in CPUs, GPUs
instead attempt to hide the latency behind a much higher degree of parallelism.
Even if some vector elements are stalled waiting for data to transfer from memory,
the high level of concurrency ensures some other elements are likely to have their
data requests satisfied and are ready to continue, thus keeping the processor busy.

Algorithms in scientific computing fall within a spectrum between those that
are compute bound and those that are memory bound. Compute-bound algorithms
require a large number of floating point operations to be performed per byte loaded
from memory. After each chunk of data is loaded, the processor remains busy for
a long while and the memory system must wait for the processor to finish before
transferring the next group of data. As a result, the speed of the processor itself is the
rate limiting factor for the performance of the algorithm. Matrix-matrix operations
such as those found in Level 3 of the Basic Linear Algebra Subprograms (BLAS)
library are generally compute bound. On the other hand, the situation is reversed
in memory-bound algorithms. The processor performs only a limited number of
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operations per byte, so the processor largely remains idle waiting for data transfers
to complete, and the performance of the algorithm is now determined by how fast
the data can be transferred from memory. Vector-vector operations such as those in
Level 1 BLAS, and matrix-vector operations such as those in Level 2 BLAS are
both memory bound on most architectures.

Our current GPU implementation of Anderson acceleration is based on the GPU-
optimized BLAS library CuBLAS from Nvidia. The form of the algorithm still fol-
lows the structure listed in Algorithms 1 through 3, and the main loop still runs on
the CPU. However, except for the small R matrix, the data for the algorithm re-
sides in the GPU RAM, and each vector operation is performed by calling Level
1 BLAS operations on the GPU. For example, each dot product in 2 is done using
the CuBLAS function cublasDdot. Because the implementation is based on vector-
vector operations, the algorithm is expected to be highly memory bound. Therefore,
the better flops rate of the GPU is not expected to be helpful, but the much higher
memory bandwidth should still give the GPU implementation a performance advan-
tage over a CPU implementation if the bandwidth is well utilized. Unfortunately,
invoking an operation on the GPU has a high overhead and each call to a BLAS
operation on the GPU incurs about 10 microseconds of latency. Furthermore, the
CPU blocks during the execution of each BLAS call (host pointer mode was set)
and only the default CUDA stream was used. Therefore, there is no overlap of work
between the CPU and GPU, nor between GPU kernels, to hide the overhead of the
BLAS calls. To make the cost of each call worthwhile, that overhead must be amor-
tized over a sufficiently large amount of work, i.e. over a sufficiently large vector.
We can expect the GPU implementation to perform poorly for small vector sizes,
but to perform well if the vector length is sufficiently large to amortize the overhead
and allow the high bandwidth to be exploited over many vector elements.

For comparison, a single-node CPU implementation was also developed that
keeps the data within the CPU RAM and uses standard BLAS instead of CuBLAS.
The bandwidth of the CPU RAM is lower than that of the GPU RAM, but the
caching system is superior and the overhead to invoke a BLAS call is comparatively
negligible. As such, we can expect the CPU version to outperform the GPU version
for small vector lengths, as the cache will be able to hold most of the data and the
overhead per BLAS call will dominate the GPU implementation. However, for suf-
ficiently large vector lengths, the data will no longer fit within CPU cache and the
overhead per BLAS call will be well amortized on the GPU. The higher bandwidth
of the GPU should then allow for higher performance over the CPU version.

The CPU implementation was linked with Intel’s optimized BLAS routines pro-
vided in the Intel Math Kernel Library (MKL). The code was tested against both
single-threaded and multi-threaded versions of the library. Multi-threading allows a
greater number of operations to access the memory system at the same time, provid-
ing better memory bandwidth utilization at the cost of some thread synchronization
overhead.

The implementations were tested on two sets of machines. The primary is rep-
resentative of a node on a current HPC-grade machine and was used for the perfor-
mance timings. The secondary machine has a consumer-grade GPU and CPU. It was
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not used to gather the primary results, but rather to supplement our understanding
of the performance through low-level profiling. Our access rights to the machine al-
lowed use of hardware performance counters that could measure bandwidth usage,
which was not possible on the main machine. The configuration of both machines
is specified in Table 4.

Primary Secondary
CPU: Intel Xeon E5-2670 Intel i5-3570K

Cores/socket 8 4
# sockets 2 1
Clock rate 2.6 GHz 3.4 GHz
L1 Cache 32 KB 32 KB
L2 Cache 256 KB 256 KB
L3 Cache 20 MB 6 MB
RAM 256 GB DDR3 16 GB DDR3
Memory bandwidth 25.6 GB/s 21.0 GB/s

GPU: Tesla K40m GeForce GTX 680
Architecture Kepler Kepler
Clock rate 745 MHz 1.18 GHz
L2 Cache 1.5 MB 512 KB
RAM 12 GB GDDR5 4 GB GDDR5
Memory bandwidth 288 GB/s 192 GB/s

Table 4 Configuration of the two machines on which the GPU implementation was tested.

The implementations were tested on the primary machine with four sets of ex-
periments. The first set was run for four Anderson iterations with a window size of
m = 4 (i.e without QRDelete) for vector lengths ranging from one to ten million,
increasing in factors of ten. The remaining experiments were run with sixteen An-
derson iterations over the same range of vector lengths, but with window sizes of
m = 4, m = 8, and m = 16. Note that in the last case, QRDelete is also not used. Be-
sides running on the GPU, all four sets were run on the CPU using both one thread
and sixteen threads. Other numbers of threads were tested but gave results interme-
diate to the one and sixteen thread cases. As with previous experiments, a dummy
function that returned random values was used and the cost of the function was not
included in the timings. The results are shown in Figure 2.

The outcome in all four cases is very similar. For vector lengths below ten thou-
sand, the CPU versions require significantly less time than the GPU version in all
four experiments. The cost of the CPU implementation remains approximately con-
stant until the vector size reaches a hundred elements, after which the cost begins
to converge to a linear increase in cost with vector length. For the GPU version, the
cost remains constant until about ten thousand elements per vector due to the high
overhead of invoking BLAS calls. Note that in each of the four experiments, the
number of vector operations is constant and independent of the vector length. That
is why the GPU cost remains constant until the vector length is increased enough
for the amount of work per vector to dominate over the overhead per vector opera-
tion. Beyond ten thousand elements per vector, the cost slowly approaches a linear
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(b) 16 iterations, m = 4
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(c) 16 iterations, m = 8
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(d) 16 iterations, m = 16

Fig. 2 Performance of a GPU implementation versus a CPU implementation using one and four
threads on the primary GPU machine. For sufficiently large vector lengths, the GPU version out-
performs the CPU version due to the higher memory bandwidth on the GPU. For smaller vector
lengths, the high overhead of invoking BLAS routines prevents the GPU implementation from
being competitive.

increase in cost with length. When the vectors are large enough that both the CPU
and GPU costs have linear scaling, we expect the ratio in performance to be roughly
equal to the ratio in effective memory bandwidth. For the case of four iterations with
m = 4, the run time for the GPU at ten million unknowns per vector is 5.4× 10−2

seconds, while it is 4.5× 10−1 seconds for the multi-threaded CPU case, giving a
ratio of about 8.5. For the case of sixteen iterations with a window size of m = 16,
for a vector length of ten million the GPU run time was 6.5×10−1 seconds, while it
was 3.1 seconds in the multi-threaded CPU case, resulting in a ratio of only 4.8, im-
plying the GPU bandwidth is not fully utilized. For the sixteen iteration cases with
m = 4 and m = 8, the performance ratios were 5.7 times and 4.9 times respectively
compared to the multi-threaded times.
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To verify that the higher bandwidth of the GPU is the primary cause for its per-
formance advantage, the CPU implementation was profiled on the 4-core machine
using the Intel VTune profiler, and the GPU implementation was profiled on the
corresponding GeForce GTX 680 using the Nvidia Visual Profiler. Both profilers
are able to measure the memory bandwidth usage directly using low-level hardware
performance counters. The qualitative results of the experiments on the second ma-
chine were similar to those of Figure 2, except that the difference between the single
and multi-threaded CPU cases was much less. For the largest vector size, when com-
puting four iterations with m = 4, the difference in run time between the GPU and
multi-threaded CPU case was a ratio of 10.0, equal to the peak bandwidth ratio for
the machine. For the sixteen iteration cases, the ratios were 8.2 for m = 4, 7.8 for
m = 8, and 7.6 for m = 16. Measuring these cases in VTune, for both CPU versions
the bandwidth usage over time had the profile of extended periods of high band-
width during the BLAS calls interspersed with shorter periods of low bandwidth
usage between the calls. The peak bandwidth in the multi-threaded case reached
over 20 GB/s, which is very close to the peak bandwidth of the machine, while the
average bandwidth was 16.1 GB/s. In the single-threaded case, the peak bandwidth
reached about 19.5 GB/s, but the profile was considerably less uniform. The average
bandwidth was 15.4 GB/s. The lower and less consistent bandwidth was due to only
having a single thread access the memory bus, preventing the bandwidth from being
consistently held high. Despite the lower bandwidth in the single-threaded case, the
run time was always nearly identical to the multi-threaded case on the 4-core ma-
chine. This is due to the OpenMP synchronization overhead in the multi-threaded
case, resulting in the performance balancing to about the same overall cost. We
assume that for the 16-core machine, the overall bandwidth utilization using mul-
tiple threads was even better than for the 4-core case, giving a significant net win
over a single thread. For the GPU with the largest size of vector, the bandwidth
usage within the BLAS calls was generally about 155 GB/s and between the calls
the bandwidth was near zero. Almost all of the time was spent within the BLAS
calls instead of between. For shorter vector lengths, the percentage of time spent
between calls increased, reflecting less amortization of the overhead of invoking the
routines, and the bandwidth utilization also fell within the BLAS calls due to the
lower amount of concurrency utilizing the memory system. For example, when the
vector length was ten thousand, the bandwidth within the BLAS calls fell to only
several hundred MB/s.

We conclude that GPUs can provide a significant performance increase over CPU
implementations as long as the number of unknowns in the problem is sufficiently
high to allow the bandwidth to be exploited. Improvements to the performance of
the implementation could come in two forms. The first is to achieve better mem-
ory bandwidth utilization. The current implementation has good memory efficiency
when the vector lengths are high, but there is some room for improvement. Perhaps
a more fruitful approach would be to design an implementation that is less memory
bound. Transfers of data are a form of communication and communication avoiding
algorithms were in fact first designed to minimize memory cost. Attempting to trade
rate of convergence for a reduction in communication cost was not effective in the
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MPI case because the amount of inter-node communication was too low to make
doing so worthwhile. However, in the on-node case, for large enough vector sizes,
almost all of the cost is memory communication. It might be that a GPU implemen-
tation of communication avoiding QR factorization or some other communication
minimizing approach would give a net performance advantage. We will explore this
possibility in future work.

7 Conclusions and Future Work

In this paper we considered whether communication-avoiding QR algorithms in AA
could increase efficiency on distributed-memory machines. We found that on 1,000
processors, communication was not significant enough to require communication
avoidance. In future work, we will test whether communication becomes more sig-
nificant when utilizing more processors.

The Anderson iteration can be restarted in a manner similar to GMRES, which
mitigates the quadratic growth in cost and memory from an increasing set of past
iterates. However, AA can also do an in-place update of the QR factorization to
achieve a similar benefit. The latter approach limits the rate of convergence less
than the former, but has higher overhead. We tested on only a single problem, but
the results suggest that the overhead from the in-place update is high enough that
restarting can be modestly beneficial in some cases. We will test on a larger set of
problems to see how the balance varies between problems.

Implementation of AA for GPUs can give a sizable performance increase over
CPU implementations when the number of unknowns is sufficiently large due to the
higher memory bandwidth of GPU memory. We did not find a benefit from MPI-
level communication avoidance, but the highly memory bound nature of our current
GPU implementation suggests communication avoidance may be useful at the GPU
level. We will investigate this in future work.
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